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Lithium metal is the ultimate anode candidate for high-energy-density lithium batteries because of its high spe-
cific capacity (3860 mAh g ~ 1) and low redox potential (~3.05 V vs. SHE). The nonuniform lithium ions flux and
the highly reactive nature of Li metal, however, lead to continuous Li dendrite formation and dead Li growth.
In this work, a separator modified by two-dimensional layered MXene (TizC,-T, T=-O and -F) and the solid-state
electrolyte Li; 5Al, 5Ge; ,(PO4); (LAGP) is designed to induce planar Li plating with engineered interphases. The
highly mixed conductive nature of LAGP/MXene facilitates the uniform transfer of the lithium ions/electrons.
In addition, the -O and -F groups provide more plating sites and lower the Li’s initial nucleation energy, which
laterally induce planar deposition. The rearrangement of Li atoms inherits the atomic structure of MXene and
significantly suppresses the formation of dendritic Li. Furthermore, the in situ formed Ge, Li;PO, and LiF in-
terphases, originating from the reduction of LAGP, help to stabilize the solid electrolyte interphase (SEI). The
LAGP/MXene-modified separator reduces the voltage hypothesis and enables stable Li metal plating and strip-
ping. In a full cell with a high loading of LiCoO, (20 mg cm~2), the engineered separator exhibits stable cycling
performance after 200 cycles. The novel strategy of regulating Li deposition and engineering SEIs is facile and
efficient and can be applied to other alkali metal anodes.

1. Introduction

Lithium metal is the ultimate anode candidate for high-energy-
density lithium batteries because of its high specific capacity (3860
mAh g ~ 1) and low redox potential (—3.05 V vs. SHE) [1-4]. Li den-
drite growth induced by inhomogeneous Li plating/stripping, however,
causes serious safety concerns and prohibits its practical applications [5-
7]. Moreover, the low coulombic efficiency, originating from a severe
Li/electrolyte reaction and an infinite volume change, results in rapid
capacity degradation [8-10]. Normally, the separator skeleton is elec-
tron insulating but can transport lithium ions through its pores between
the cathode and anode. The anisotropic distribution of Li ions on the
anode surface results in the inhomogeneous nucleation and deposition
of Li ions and dendritic Li growth. Non-reactive solid electrolyte coat-
ings that can uniformly coat the lithium ions on anode surfaces, such
as lithium lanthanum zirconium tantalum oxide (LLZTO) and lithium
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lanthanum zirconium oxide (LLZO), were evaluated [11-13]. However,
the poor wettability of this kind of solid electrolyte retards the rapid
transfer of lithium ions and leads to a high interfacial impedance. In ad-
dition, the solid electrolyte interphase (SEI) formed in carbonate elec-
trolytes still suffers from nonuniform lithium-ion flux and poor me-
chanical stability [1,14]. Electrolyte engineering, including using fluo-
rinated solvents, high-concentration electrolytes, AlCl;, LiNO3, lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) additives and so on, is an
effective route to improve the mechanical strength of SEIs on Li metal
[15-17]. Building an artificial protective layer is another way to improve
the distribution of composites in the SEI, providing fast Li-ion diffusion
and increasing the mechanical strength [18-21].

More recently, researchers have paid more attention to struc-
tured and functionalized conductive Li hosts to induce planar Li
deposition. For example, graphene, nitrogen-doped graphene [22],
three-dimensional (3D) porous copper [23], metal-organic frameworks
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(MOFs) [24], vertically aligned nanoscale channels [25], and 3D struc-
tures containing nanopores [26] have been designed to regulate the de-
position of Li ions. The large specific surface area of these conductive
frameworks lowers the local current density. In addition, a functional-
ized two-dimensional (2D) material that can effectively reduce the nu-
cleation energy barrier and induce even deposition should be designed.
MZXene (TizC,-T, T represents functional groups), as a new 2D layered
material, has abundant surface functional groups, a high electronic con-
ductivity, and a high mechanical strength [27,28]. MXenes applied in
composite Li metal anodes, such as structured MXene-Li films, MXene
aerogels, and pillared Sn@MZXene, show better cycling stability due to
suppressed dendritic Li/Na growth and a good affinity between the sur-
face functional groups and Li/Na metals [29-31]. However, the induc-
tion mechanism of Li metal growth on MXenes is still unclear.

In this work, regarding the demands of uniform Li deposition and
robust mechanical strength of the SEI layer, we propose a separator
modified by a Li; 3Al) 3Ge; 7(PO4)3 (LAGP) and Ti3C,-T (T=-O and -
F) composite (Fig. 1). In the composite, MXene and LAGP supply fast
electron and lithium-ion channels, respectively. In addition, the O and
F groups on MXene promote Li nucleation and laterally induce oriented
deposition, which is demonstrated by density functional theory (DFT)
calculations and experimental results. As a result, Li atoms are directly
deposited from the MXene side to the Li metal substrate side with a
“sheet-like” structure. Furthermore, LAGP can react with Li metal to
form stable interphases comprising Li;POy, LiF, and Ge. Taking advan-
tage of the designed SEI and uniform Li deposition, a high-rate and long-
durable cycling performance are achieved. For example, Li/Li cells show
superior performance with an accumulated capacity of 1000 mAh cm~2.
In a full cell with the engineered separator, even at a high cathode load-
ing of 20 mg cm~2 LiCoO, (LCO), the cell shows a high capacity reten-
tion after 200 cycles. In our work, a new principle for designing stable
alkali metal anodes is developed.

2. Results and discussion

Scanning electron microscopy and transmission electron microscopy
(SEM and TEM, respectively) were used to characterize the morphology
of LAGP and MXene. Ti;C,-T nanosheets were synthesized by etching
MAX-Ti3AlC, and were confirmed by X-ray diffraction patterns with the
observation of a (002) peak (Figure S1). After a two-step centrifugal sep-
aration process, few-layer Ti;C,-T was obtained (Figure S2). Fig. 2(a)
shows the surface SEM image of the LAGP/MXene-coated polypropy-
lene (PP) separator. Nanosized LAGP powders are well dispersed on the
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MXene sheets, which fully cover the porous PP separator. The intercon-
nected 2D MXene exhibits a uniform surface electrical field distribution
and laterally induces uniform Li metal deposition. Note that lithium ions
are transported slowly across different MXene sheets. Thus, lithium-ion
conductor LAGP nanoparticles, the X-ray diffraction (XRD) patterns of
which are shown in Figure S3, are incorporated into the space between
the different layers of MXene and the pores. LAGP shows a high ionic
conductivity of ~ 5 x 10~* S cm~2 at room temperature (Figure S4).
As a result, the LAGP/MXene provides a fast electron and lithium-ion
transport pathway across the separator surface. The thickness of the
LAGP/MXene composite coating layer is approximately 7 ym (Figure
S5). Fig. 2(b) shows the TEM image of the LAGP/MXene composite.
Nanosized LAGP particles are embedded on the flexible MXene sheet
with shrinkage, while some crimping parts are observed on the edge.
The crystalline structure of MXene was examined by high-resolution
TEM (HRTEM, Fig. 2c), and the number of MXene layers was 4 with
a plane spacing of 0.99 nm, corresponding to the (002) planes of Ti;C,-
T [32]. In the inner parts of the MXene pieces, a hexagonal crystalline
structure is observed, and the interplanar space is 0.21 nm. The HRTEM
of LAGP shows that the interplanar spacing is 0.36 nm (Fig. 2d), corre-
sponding to its (113) planes [33].

A dark-field TEM image of LAGP/MXene is shown in Fig. 2(e), and
the LAGP nanoparticles are enrolled in the flexible MXene framework.
The elemental energy dispersive spectroscopy (EDS) mapping, shown in
Fig. 2(f), further confirms that the LAGP particles are embedded in the
flexible MXene nanosheets. Notably, O and F signals are also detected at
the surface of MXene (see detailed EDS mapping information in Figure
$6), indicating the terminal functional groups of -F and -O.

To reveal the lithium transportation mechanism and to test the ionic
conductivity, lithium-ions-blocking stainless steel (SS) was used as cur-
rent collector and SS/Separator/SS cells were fabricated. As shown in
Figures S7a and b, the resistance of PP and PP/MXene are the same and
smallest (1.4 Q), implying the lithium ions transportation in the coating
layer is short by high electronically conductive MXene. In this case, Li
metal could deposit on the top side of MXene coating layer. However,
the resistance of PP/LAGP+MXene is 2.7 Q, revealing that the lithium
ions can transport at the top side of the composite coating layer and
is not short by electrons; and partially lithium ions transportation (at
the bottom side) is short by MXene. This is because the resistance of
PP/LAGP is 4.3 Q, which is higher than that of PP/LAGP+MXene. How-
ever, the lithium ions at the top side mainly transport through the bulk
phase of LAGP and the interface of liquid electrolyte and LAGP [34] be-
tween the adjacent two layers of MXene; and through the defects of
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Fig. 2. Synthesis and characterization of the LAGP/MXene composite coating layer. (a) Surface SEM image of the LAGP/MXene coating layer. (b) TEM image of the
LAGP/MXene composite. (c) High-resolution TEM image of MXene. (d) High-resolution TEM image of LAGP/MXene. (e) Dark-field TEM image of LAGP/MXene. (f)

EDS mapping of LAGP/MXene in (e).

MXene between different layers. With an optimized ratio, the electron-
ical conductivity from the bottom side to the top side is gradually de-
creased, which induces planar lithium metal deposition from the bottom
side of the composite coating layer to the lithium metal substrate. The
design principles here is different from Li metal coating, for which nor-
mally highly conductive host structures were used, such as pure MXene,
Graphene, and RGO [31,35,36]. More importantly, separator coating is
facile and compatible with traditional slurry cast method.

To estimate the electrochemical stability of the LAGP/MXene-
modified PP separator against lithium metal, the mass ratio of LAGP
to MXene is 8:1 if not mentioned. Symmetric Li/Li metal electrodes
were assembled into a coin-type cell with carbonate liquid electrolyte.
Under an area capacity of 1 mAh cm™2, the symmetric cells with
PP/LAGP+MXene separators demonstrate a stable Li plating/stripping
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voltage until 700 h under a current density of 1 mA cm~2 (Fig. 3a).
By contrast, the cell with the pristine PP separator shows an obvious
voltage increase after 200 h, as shown in Figs. 3(a) and (b). The volt-
age hysteresis of the cells with PP and PP/LAGP+MXene are 0.43 and
0.023 V, respectively. This result is because of the large interfacial re-
sistance caused by dead lithium and mossy Li with poor interconnec-
tions. At a higher area capacity of 2 mAh cm~2 per cycle, the same
trend is also observed (Figs. 3c and d). The cell with PP/LAGP+MXene
shows stable cycling after 1000 h, while the cell with the PP separator
shows an obvious voltage hysteresis increase after 250 h. The voltage
peaks of cells used PP separator in Figs. 3b and d is because a thick film
of dendrites formed after repeated deposition and stripping processes,
during which the lithium metal transformed to mossy structure with
tiny dendrites. At the same time, the highly reactive lithium dendrites
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Fig. 3. Electrochemical performance of Li/Li symmetric cells with PP and PP/LAGP+MXene separators. (a) Voltage-time profiles of Li plating/stripping with an area
capacity of 1 mAh ecm~2 at 1 mA cm~2. (b) The amplified profiles in (a). (¢) Voltage-duration time profiles of Li plating/stripping with an area capacity of 2 mAh
cm~2 at 1 mA em~2. (d) The amplified profiles in (c). (e) The initial voltage-time profiles of Li plating/stripping with an area capacity of 1 mAh cm~2 at 1 mA cm~2.
(f) Voltage hysteresis of Li/Li symmetric cells at 1, 2, 3, 4, and 5 mA cm~2 with a single side-coated separator. (g) Voltage-capacity profile of the Li-Cu cell at 1 mA

cm~2.

react with liquid electrolyte and formed SEI layer, which is insulated
and irreversible (also called ‘dead lithium’). Due to the poor mechani-
cal property of lithium dendrites, the dendrites coated with insulated
layer may peel off the lithium metal substrate, and the polarization
voltage increased. After that, newly dendrites formed and the effective
electrochemical reactive area increased and the polarization voltage de-
creased. The initial voltage-time profiles of Li plating/stripping show
that the cell with the LAGP/MXene-modified separator has a smaller
nucleation overpotential (Fig. 3e). Derived from the voltage-time pro-
files in Figure S8, the voltage hysteresis of Li-Li symmetric cells with
the PP separator are 0.03, 0.074, 0.141, 0.215, and 0.289 V at 1, 2,
3, 4, and 5 mA cm~2 (Fig. 3f), respectively. The Li-Li cells with the
PP/LAGP+MXene separator show smaller overpotentials of 0.03, 0.057,
0.107, 0.147, and 0.203 V at 1, 2, 3, 4, and 5 mA cm~2 (Fig. 3f), re-
spectively. This finding indicates that LAGP/MXene benefits the kinet-
ics of Li deposition and stripping due to fast lithium-ion and electron
transportation at the interface between LAGP/MXene and the Li metal.
In addition, good wettability between the liquid electrolyte and sepa-
rator may help to enhance the rate performance. As shown in Supple-
mentary Video 1, the carbonate liquid electrolyte can easily permeate
the PP/LAGP+MXene separator within one second, confirming the good
affinity of the modified separator with the liquid electrolyte. In contrast,
the contact angle between PP and the same liquid electrolyte is approx-
imately 43.3° (Figure S9). Furthermore, the large number of terminal
-0 and -F groups can reduce the energy barrier of Li nucleation and in-
duce Li metal deposition. The fast kinetics enabled by the LAGP/MXene
coating is further demonstrated by Li-Cu cells; for example, the over-
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potentials of cells with PP and PP/LAGP+MXene are 200 and 70 mV
(Fig. 3g), respectively. We also tested the electrochemical performance
of the Li/Li cell with a PP/LAGP separator (Figure S10) as a compar-
ison. The LAGP coating enabled stable cycling performance for 300 h,
further demonstrating the synergetic effects of the LAGP/MXene com-
posite coating for improving the stability and fast kinetics against the Li
metal.

To explore the application of LAGP/MXene-modified separators in
full lithium metal batteries, LCO/Li practical cells were assembled. At
a loading of 8 mg cm™2, the initial capacities of the cells with PP and
PP/LAGP+MXene tested at 0.5C (1C=140 mA g~ 1) are 119.5 and 137
mAh g~ ! (Figs. 4a and b), respectively. The cell with PP shows a lower
capacity because of its slow Li plating/stripping kinetics; for example,
the overpotentials for PP and PP/LAGP+MZXene are 0.24 and 0.11 V
(Fig. 4b), respectively. Nonetheless, during the initial stage of the first
charge process, the starting voltages are 4.16 and 4.0 V (Fig. 4b), fur-
ther demonstrating the smaller energy barrier for Li plating after coat-
ing with LAGP/MXene. After 2 cycles activated at 0.5C, the cell was
then subjected to a long-life test at 2C. The cell with the PP separator
starts to degrade after 200 cycles, and the capacity retention is only
18.2 mAh g ~ ! after 500 cycles. In sharp contrast, the cell with the
LAGP/MXene-modified separator exhibits stable cycling performance
for 500 cycles with a capacity of 100 mAh g ~ 1. Even at a high rate of
4C, the cell with the LAGP/MXene separator still shows stable cycling
performance (Fig. 4c). The specific capacities of the cells with PP and
PP/LAGP+MXene separators after 500 cycles are 23.2 and 76.7 mAh
g ~ ! (Fig. 4c and d), respectively. The LAGP/MXene coating layer fa-
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Fig. 4. Electrochemical performance of LCO/Li cells with PP and PP/LAGP+MZXene separators. (a) The cycling performance of LCO/Li cells with different separators.
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different separators.

cilitates fast lithium-ion transportation and may help to form a stable
protecting layer on the Li metal surface.

To better prove the effect of LAGP nanoparticles, the electrochemical
performance of a full cell used LAGP/MXene (1:1) coating layer mod-
ified PP separator was tested (Figure S11). After the initial two cycles
tested at 0.5C, the cell was undergoing long-life test at 2C (Figure S11a).
The initial discharge capacity is 136.4 mAh g~ ! (Figure S11b), the over-
potential is smaller compared to LAGP/MXene (8:1, Fig. 4b) due to more
Li nucleation sites provided by lots of MXene. Before 300 cycles, the cell
shows relative stable cycling performance and the specific capacity at
300th cycle is 102.2 mAh g ~ 1. After that, the capacity starts to fade
quickly, and the capacity retention is only 70.8 mAh g ~ ! at 500th cy-
cle. The cycling stability here is worse compared to LAGP/MXene (8:1)
shown in Fig. 4a. With more MXene, the conductivity of the whole coat-
ing layer including the top surface significantly improved, the Li ions on
the top side could easily be reduced and Li metal directly deposit on the
top surface. By contrast, with only 10 wt.% MXene, the electronic con-
ductivity of the composite coating layer should be gradient decreased
from the bottom to the top side because of the insulated LAGP particles
embedded between different MXene layers. With an optimized ratio, the
lithium ions preferably to deposit on the bottom side of the composite
coating layer, which could substantially improve the cycling stability.

Cyclic voltammetry (CV) at a scan rate of 0.2 mV s ~ 1 was also
carried out, as shown in Fig. 4e, to record the redox potential of the
LCO/Li metal battery. For the cell with the PP separator, the redox
currents increase with the cycle number, implying the activation pro-
cess of Li metal. By contrast, the redox peaks almost overlap for the
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first three cycles, indicating fast Li-ion transportation at the interface
between LAGP/MXene and Li metal. Electrochemical impedance spec-
troscopy (EIS) was used to analyze the impedance evolution after differ-
ent cycles, as shown in Fig. 4f. All Nyquist plots comprised two semicir-
cles: the interfacial resistance at high frequency and the charge transfer
resistance at low frequency. Obviously, the impedance of the cell with
the PP separator is larger than that with the PP/LAGP+MXene separa-
tor after 5 cycles. In addition, the impedance is almost the same after
100 cycles for PP/LAGP+MXene, while it increases quickly for PP dur-
ing the 100 cycles. The fast kinetics should enable the high-rate perfor-
mance of the LCO/Li battery even at a high active mass loading of 20 mg
cm~2, The rate performance was tested between 0.5 and 4C (Fig. 4g).
The specific capacities for the cell with the PP separator at 0.5, 1, 2,
and 4 C were 130.9, 120.6, 91.5, and 45.5 mAh g ~ 1, respectively. The
capacity at high rates significantly improved with LAGP/MXene mod-
ification; for example, the specific capacities were 130.9, 120.6, 91.5,
and 45.5 mAh g~ ! at 0.5, 1, 2, and 4 C, respectively. Our full cells with
PP/LAGP+MZXene separators further confirm the stable interphase layer
and fast kinetics enabled by the LAGP/MXene coating.

To meet a high energy density, such as 300-500 Wh kg~!, a high
loading area capacity of 3-5 mAh cm~2 is required [37]. In our cases,
LCO cathodes with a high loading of 20 mg cm~2 were fabricated and
tested between 2.8-4.2 V. At a low rate of 0.1C (1C=140 mA g — 1), the
initial capacities of cells with PP and PP/LAGP+MXene separators were
140.3 and 145 mAh g — ! (Figs. 5a and b), respectively. At 0.5C, both
cells show relatively stable cycling during the first 100 cycles after the
initial two cycles were activated at 0.1C (Fig. 5a). For the cell with the
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PP separator, serious capacity degradation is observed after 100 cycles,
and the capacity retention is only 15.9 mAh g~ ! after 200 cycles (11.3%
of the first cycle). Remarkably, the full cell with the LAGP/MXene-
modified separator exhibits enhanced cycling stability. Even after 200
cycles, the specific capacity still retains 99 mAh g ~ !, which is 68.3% of
the first cycle. The LAGP/MXene-coated separator shows great potential
in the practical application of high-area-capacity Li metal batteries.
The characterization of the Li metal morphology evolution in full
cells is important to clarify the effect of the LAGP/MXene coating layer
on the Li metal. From the cross-sectional SEM image (Fig. 5c), a dense
structure is observed with a thickness of 18 ym. From the surface SEM
image, densely stacked Li metal is observed, which further demonstrates
that large Li sheets are formed. In contrast, the full cell with the PP sep-
arator shows a mossy and porous structure of the Li metal anode with a
thickness of 50 ym (Fig. 5d). Many Li dendrites are formed on the sur-
face of Li metal. Notably, the thickness of the pure Li film is 14 ym for
2.8 mAh cm~2; so the volume expansion of the Li metal anodes with PP
and PP/LAGP+MZXene separators are 257% and 28%, respectively. The
uniform and dense Li plating and stripping was attributed to the uniform
Li-ion and electron transport enabled by LAGP/MXene. The large sur-
face area of mossy Li leads to serious side reactions with the carbonate
electrolyte and thick SEI coated on the Li dendrites during repeated cy-
cles. As a result, the resistance continuously increases and loses the elec-
trochemical activity of the Li metal, which causes fast capacity fading.
Atomic force microscopy (AFM) was used to record the morphology and
electrical field change after coating with LAGP/MXene. The nanosized
LATP/MXene powders uniformly cover the PP surface, and no pores ex-
ist (Fig. 5e). From the electrostatic force microscopy (EFM) image, the
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voltage distribution is almost the same as the MXene morphology, and
the electrical field does not change very much between different MXene
sheets (Fig. 5f). However, large pores are observed in the skeleton of the
PP separator (Fig. 5g). No voltage signal is detected on the PP separator
(Fig. 5h), implying its insulating nature.

To better understand the guided deposition effects of TizCy-T
(T = -0 and -F), first-principles calculations were employed to ana-
lyze the effective sections of TizC,-T. Ti3C,-T exhibited low adsorption
energies for the first layer of Li (Ti3C,—O at —1.52 eV and Ti3C,—F
at —0.58 eV), indicating a good affinity between Ti;C,-T and Li and
confirming the low nucleation overpotential (Figs. 6a and c¢). When the
number of Li layers reached 6 (Ti;C,—-O) and 2 (Ti3C,-F), the adsorption
energies gradually stabilize as the number of Li layers increase, and the
corresponding adsorption energies are —0.35 eV and —0.13 eV, respec-
tively. This result suggests that Ti;C,—O plays a more important role in
inducing deposition than Ti;C,-F. In addition, the charge density differ-
ence plots of Li atom layer deposition on TizC,-T are shown in Figs. 6b
and d, with yellow and blue areas representing electron gain and loss.
An obvious blue area emerging above the first layer of Li atoms indicates
a significant charge transfer from Li to the TizC,-T substrate. The large
portion of yellow areas located on the O atoms illustrates that O atoms
are the main electron acceptors. The above results reveal the fundamen-
tal protection mechanism by which Ti;C,-T could efficiently induce Li
atom stable deposition and the formation of a homogeneous electrode
surface.

The thermodynamic phase stability of LAGP/Li was evaluated by
DFT calculations. The reaction energy between LAGP and Li is shown
in Fig. 7(a), and the large negative Gibbs free energy value implies that
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Fig. 6. The mechanism of planar Li deposition induced by layered Ti,Cs-T. (a)
and (c) Adsorption energy of Ti;C,—-O and Ti;C,-F sections to different Li lay-
ers. (b) and (d) Side view of the different charge densities of Li layer number
deposition on the outer surface of TizC,-T (X = O, F). The loss of electrons is
indicated in blue, and the gain of electrons is indicated in yellow.

thermodynamically LAGP is highly reactive with Li. The chemical reac-
tion products of LATP/Li at a molar ratio of 0.07 are LizPO,, LisAlO,,
LisP, and Ge. TEM was used to characterize the morphology evolution
and interfacial stability of LAGP/MXene after 50 cycles. The cycled MX-
ene shows integrated morphology with LAGP particles embedded in it
(Fig. 7c). The crystalline structure was checked by HRTEM, and inter-

aE 00—
g / b PP/LAGP+MXene
3 00 o euceu| N
o 53 / In-situ formed interphases
) i L.
g -0.4 ‘ . B
2 .05 / Li
S
5 06 :.’ Li,PO,, Li,AIO,, Li,P, Ge
Q
0.7
= 00 02 04 06 08 10

Motar i of LAGP, x Uniform and stable Li deposition

Cycled
— MXene

Energy Storage Materials 39 (2021) 250-258

planes with distances of 0.36 nm and 0.99 nm are observed (Fig. 7d),
corresponding to LAGP (113) and Ti3C,-T(002), respectively. The reac-
tive nature/in situ formed protecting interphases between LAGP and Li
metal was further confirmed by the TEM images of cycled LAGP parti-
cles, as shown in Fig. 7e. In situ formed nanocrystals are found, and the
whole particle transformed into a porous morphology. The reaction be-
tween LAGP and Li metal induces a large mechanical stress and laterally
causes a porous structure [38]. As a result, the LAGP accommodates the
mechanical stress of Li dendrite growth and avoids its penetration into
the PP separator through a reactive method. Even after 500 cycles, LAGP
still exhibits an integrated particle morphology (Figure S12), implying
the structural stability of LAGP during long-term cycling. The reaction
products of LAGP/Li consist of Li;PO,4 and Ge, as determined from the
HRTEM image of cycled LAGP (Fig. 7f), which is consistent with the DFT
calculation results. Considering the lithiation voltage of Ge starts at ~
0.5 V vs. Li/Li* [39], so LiGe, alloy may form during charge process.
The mixed conductive Li;PO, and Ge/LiGe, nanocrystals should facili-
tate fast lithium-ion and electron transportation through the interfaces
of LAGP/MXene and Li metal.

X-ray photoelectron spectroscopy (XPS) was further performed to an-
alyze the surface products of the protection layer between LAGP/MXene
and Li metal. The Cls spectra of the pristine sample show two main
peaks located at 285.6 eV and 290.1 eV (Fig. 7g), corresponding to C-O
and C-F bonds [40], respectively. After cycling, these two peaks shift to
lower binding energies; for example, new peaks at 284.3 eV (C = C) and
289.3 eV (C-F) are observed [40], indicating that the surface O and F
functional groups were reduced by lithium atoms. For the F1s spectra
(Fig. 7h), the same phenomenon is observed. In addition to the pristine
C-F peak (687.1 eV), a new peak at 684.4 eV corresponding to Li-F is
detected [41]. For the Ge3d spectrum (Fig. 7i), the main peak of LAGP
(33.0 eV) is shifted to 29.3 eV, implying the reduction of LAGP and the
formation of Ge nanoparticles [42], which is consistent with the TEM
results. For the P2p spectra (Fig. 7j), the binding energy shifted from
133.9 eV to 133.2 eV, revealing the formation of Li;PO, and LizP [42].
The XPS data further confirm that the surface O and F functional groups
effectively reduce the energy barrier and provide nucleation sites for Li
atoms, which laterally induces planar Li metal deposition on T3C,-T.

Fig. 7. Theoretical and experimental data re-
veal the nature of interphases formed in

e situ. (a) The reaction energy between LAGP
e ’ a < ‘. and Li metal at different molar ratios. (b)
® %y Schematic of in situ formed interphases be-

tween LAGP/MXene and Li metal. (¢) TEM im-
age of cycled MXene. (d) HRTEM image at the
interface between LAGP and TizC,-T. () TEM
image of cycled LAGP particle. (f) HRTEM im-
age of cycled LAGP particle. XPS analysis of
LAGP/MXene before and after 50 cycles: (g)
Cls, (h) F1s, (i) Ge3d, and (j) P2p.
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The highly reactive nature of LAGP with Li metal helps to form a con-
ductive and stable protection layer comprising Ge, LizPO,, and Li3P.

3. Conclusion

In summary, a universal strategy for separator modification that in-
duces planar Li metal deposition with an engineered SEI layer is suc-
cessfully proposed. T3C,-T with functional O and F groups provides ef-
fective initial nucleation sites, and the Li atom arrangement on T3C,-T
surfaces inherits the MXene crystal structure, resulting in planar Li metal
deposition at the bottom side. In addition, the reactive nature of LAGP
helps to form an in situ protective layer comprising Ge, Li;PO,, and LiF.
Furthermore, the mixed conductive nature of MXene/LAGP enables fast
and uniform Li-ion/electron transfer at the interfaces. Taking advantage
of the synergetic effects, the modified separator exhibits superior elec-
trochemical performance in both half and full lithium metal cells. At a
high area loading of 20 mg cm~2 LCO, the full cell exhibits stable cy-
cling performance after 200 cycles. This work sheds light on the design
of functional separators for high-performance Li metal batteries.

Experimental section

Materials synthesis: NASICON-type Li; 3Al; 3Ge; ,(PO4)3 (LAGP) was
synthesized by a solid-state reaction method. The starting materials were
LiOHH,0 (99.95%, Sigma Aldrich), Al,05 (99.99%, Sigma Aldrich),
GeO, (99.8%, Sigma Aldrich), and NH4H,PO, (99.5%, Sigma Aldrich)
powders. LIOH-H,O was heated at 250 °C for 3 h to remove crystalline
H,O prior to use. Stoichiometric amounts of chemicals with 10 wt.%
excess LiOH were hand-ground for 0.5 h in an agate mortar. The mixed
powders were then cold pressed into pellets with diameters of 13 mm
at 400 MPa. The pellets were then preheated at 400 °C in air for 5 h,
hand-ground into fine powders, cold pressed into pellets and sintered at
900 °C for 5 h. The synthesized LAGP pellet was ball milled (600/min
for 3 h) into nanoparticles. For the preparation of MXene, 2 g of Ti;AIC,
powder (11 Technology Co., Ltd) was etched in 40% hydrofluoric acid
(HF) and stirred for 10 h. Then, the etching solution was centrifuged sev-
eral times until the pH reached 6. The as-received products were then
ultrasonically treated in deionized water for 10 min. The solution con-
taining MXene was then centrifuged 3 times. The MXene was carefully
collected from the tube and stored in a vacuum oven.

The coating was created by slurry coating with a doctor blade. The
slurry with 80 wt.% LAGP nanopowders, 10 wt.% MXene and 10 wt.%
polyvinylidene fluoride (PVDF) binder was thoroughly mixed in 1-
methyl-2-pyrrolidone (NMP) solvent. The well-dispersed slurry was then
cast on commercial polypropylene (PP) separators dried in vacuum at
55 °C for 12 h. The coating thickness was controlled to be below 10 ym.

Characterization: The phase compositions of the synthesized LAGP
powders, MXene and their composite were characterized by X-ray
diffraction (XRD) (Cu K,, 4 ~ 0.15406 nm). Morphologies of the
LAGP/MXene were examined using a field-emission scanning electron
microscope (FESEM, JSM-7600F). The microstructures and composi-
tions of MXene and LAGP before and after cycling were analyzed by
a transmission electron microscope (TEM) equipped with an energy dis-
persive spectroscopy (EDS) (FEI Titan 300 kV). Atomic force microscopy
(AFM, Bruker Dimension Edge) was used to detect the local surface mor-
phology and electrical field distribution of the different separators.

Electrochemical evaluation: A carbonate electrolyte containing 1 M
LiPFg in mixed EC/EMC/DMC (1:1:1 wt.%) solvents with 2 wt.% FEC
additive was used and the amount is 80 L for each cell. For ionic con-
ductivity test, ions-blocking stainless steel (SS) was used as current col-
lector and SS/separator/SS cells fabricated. Li/Li symmetric cells with
PP and double-coated PP/LAGP+MZXene separators were prepared with
current densities between 1 and 5 mA cm~2. Li/Cu cells with PP and
single-coated PP/LAGP+MXene separators were also provided. Li/LCO
cells with an active material loading of 20 mg cm~2 were fabricated and
tested between 2.8-4.2 V. The long-life performance was tested at a rate
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of 0.5C (C = 140 mA g — 1). Rate capability tests at various current den-
sities from 0.5 to 4C were performed. Electrochemical impedance spec-
troscopy (EIS) tests were performed using an electrochemical worksta-
tion (Biologic SP-300) between 7 MHz and 0.1 Hz with an AC amplitude
of 10 mV. CV curves of LCO/Li cells with PP and PP/LAGP+MXene sep-
arators were recorded between 2.8-4.2 V at a scan rate of 0.2 mV s ~ L.

Computational method: All calculations were performed with the Vi-
enna ab initio Simulation Package (VASP) based on density functional
theory (DFT) [43] within the generalized gradient approximation of
Perdew-Burke-Ernzerhof (PBE) [44]. The interaction between ion cores
and valence electrons was treated using the projector augmented wave
(PAW) method [45]. An energy cutoff of 500 eV was applied for the
plane-wave expansion of the electronic eigenfunctions. The structures
were relaxed until all the atomic forces on each ion were less than
0.01 eV/A, and the energy convergence with the energy difference was
below 10~ eV. The vacuum space in the z direction was approximately
18 A to avoid the interaction between adjacent sheets due to the peri-
odic image. The Brillouin zones were sampled with a 2 x 2 x 1 k-point
mesh by the Monkhorst-Pack grid for Ti;C,-T (T = -O and -F) optimiza-
tion. Throughout the simulations, van der Waals (vdW) interactions at
the DFT-D2 level were taken into account [46].

The adsorption energies of different Li layer numbers on TizC,-T
sections were calculated on a 3 x 3 supercell by

E, = [E(Ti3Cy = T + nLi) — E(Ti3C, = T) — nu(Li)] /n,

where E(Ti3C,-T+nLi) and E(Ti3C,-T) are the total energies of Ti;Cy-T
with and without Li layer numbers, respectively; and u(Li) is the chem-
ical potential of Li obtained from the body-centered cubic (BCC) bulk
structures of Li.

To obtain a mechanistic understanding of the charge transfer process
of Li atom layer deposition on Ti;C,-T sections, a charge difference plot
was used, and the charge difference was calculated by

Ap(r) = priyc,—1+Li (1) — PTiyc,—7 () — PLI(P),

where pr, o, _x1i(r) represents the charge density of Li atom layer depo-
sition on TizCy-T sections, prj,c,-x (r) is the charge density of Ti3C,-T,
andp ;(r)is the charge density of isolated Li atoms in the same position
as in the total systems.

To evaluate whether the LAGP/Li interfaces were thermodynami-
cally favorable, we calculated the decomposition reaction energy of the
LAGP reaction with metallic lithium by the reduction and decomposition
of LAGP [47]. Here, we considered the interface to be a pseudo-binary
system composed of LAGP and Li, xLAGP + (1 — x)-Li. The pseudobinary
phase diagrams were extracted from the multidimensional phase dia-
grams by taking the compositions of the LAGP and Li to each end point.
The reaction energies of mutual decomposition at interface AE were
determined by considering the mixing ratio x that yielded the largest
reaction driving force [48,49], namely,

{Z E(ce;) = [(1 = x)E(er;) + xE(epagp)] }

where E(Cy;) and E(Cysgp) are the corresponding convex-hull minimum
energies and E(C;) is the convex-hull function returning the lowest en-
ergy equilibrium of the phase at the given composition. The mutual re-
action energies and equations are a function of the mixing ratio at this
interface x, and x varies from O to 1.

AE(c;, ¢ = min
(cvi> cLaGP) <o
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